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I’m going to say some things about complexity and how I think biology handles
complexity. I’m going to say a few things about emergence and some unconventional
and unpopular things about ways to think about this.

Generally, my lab is three quarters wet lab biology and about one quarter
computational people. We straddle this interface between computing and the life
sciences. You can find all of the data sets, the software, the primary papers, everything
is downloadable at our lab website. This is my personal blog where I write about what
I think some of these things mean.

What I’m going to try to convey today are three things.


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That we need to get beyond neuromorphic architectures in our attempts to understand
how intelligence can handle complexity.

First of all, I’ll show you some amazing and unconventional examples of intelligence
you wouldn’t have seen in standard introductions to biology. What it’s telling us is that
life uses intelligence all the way down to the lowest scale or the lowest level of
organization. I’m going to highlight a few of the lessons that we’ve learned from all
this, and in particular, evolutionary and mechanistic aspects of how we communicate
with, not micromanage, the multi-scale agential material of life.

The complexity of the living organism makes it basically impossible to micromanage in
the same way that we engineer with other types of materials, but that’s okay. That’s not
how life regulates itself, and we can do better and we can do what life does. I’ll show
you what that is. Toward the end, I’m going to say speculative things about the origin
of embodied intelligence and what it means both for biomedicine and for AI.


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One of the key things that I try to do in our work is to develop a framework that allows
us to recognize, create, and relate to really unconventional intelligences.

I’d like to be able to understand what they all have in common, regardless of their
composition or their origin story. I seek unifying principles around familiar creatures
such as primates and birds and maybe an octopus or a whale, but also very weird
creatures: colonial organisms, swarms, cells, tissues, synthetic life forms, of which I’ll
show you some—AIs, whether software or robotic—and perhaps someday
exobiological agents, alien life. I also want to include some very strange things that I
probably won’t have time to talk about today that aren’t physical beings at all.

What I’d like to do is to develop frameworks that are not just philosophy. They need to
move experimental work forward and show how specific philosophical ways of
looking at these things actually lead to progress, both in biomedicine, which is a lot of
what we do, but also in bioengineering, in computer science, and, very importantly, in
better ethics.

I’m not the first person to try for something like this. This is Wiener et al.’s work in
, where they tried to show, in terms of cybernetics, the steps from passive matter to
human-level metacognition.

The details of my work are here in this fairly lengthy paper.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=117
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So let’s talk about some of the unique features of the biological substrate. And this is
important in establishing how far away from brains we need to go to really understand
what’s going on. The first thing I want to say is that biology presents a face to the
outside world for the dominance of genetics. And the idea is that the molecular biology
of the genome should really tell us everything we need to know. And the promise is, of
course, that once we really tame the genetic information, we’ll be able to do whatever
we need to do. So I just want to explain how things are actually quite different.

This is a baby axolotl. Axolotls are amphibians that have little tiny forelegs in this early
stage. This is a tadpole of the frog, Xenopus laevis, which we use all the time. They do
not have legs in the early stages. In my group, we make something called a frogolotl,
where we combine cells from axolotls and frogs. I could pose the following question.
You’ve got the axolotl genome. It’s been sequenced. We know we can read it. It’s been
annotated. We have the frog genome. We know all the genetic information from this
species. Simple question: if I make a frogolotl, are frogolotls going to have legs or not?
And if they do have legs, are those legs going to be made of frogolotl cells, or will they
incorporate some Xenopus laevis cells?

The important thing to note is that we currently have no way of deriving that kind of
information from the genetics. The genetics specify the hardware that all of the cells in
these creatures get to have, the protein-level, nano-level hardware. What they don’t tell
you is the actual software which drives outcomes. In other words, the computations
and the decision making that happens at different scales once that hardware is



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=210


powered up. We have to understand that knowing the specifications of the hardware,
for example, in terms of the genetics, is not sufficient. These forms, while they’re pretty
reliable by default, are complex.
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There’s actually incredible plasticity that’s there. Here’s a tadpole of that same frog,
here is the mouth, here are the nostrils, here’s the brain, the spinal cord, and the gut is
back here. What you’ll notice we’ve done is we’ve prevented the primary eyes from
forming, but we did put an eye on its tail. This eye, here we’ve traced it with a red
lineage label. You can see that it makes an optic nerve. The optic nerve does not go to
the brain. It sometimes synapses on the spinal cord, sometimes on the gut, sometimes
nowhere at all. By using this machine that we built to automate the behavioral training
of these animals using light cues, we found out that they can see perfectly well.

This is their eye; it does not connect to the brain. They can see. They can learn in visual
tasks.

This is a puzzle because typically you would think that a novel sensory-motor
architecture would need mutation, selection, evolution. You would need some


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adaptation to do this. It works out of the box. The very first time you make these
animals, they never existed before. No problem. They can see; the brain somehow
interprets signals arriving from other pathways, folds it into their behavioral repertoire.
Already we’re starting to see that there’s functional plasticity here that speaks against
some kind of a hardwired system where the genetics just tells every cell where to be.
We know that that’s impossible.

Slide  of  · Watch at :

We can go on and notice that this plasticity is actually much deeper than that. Here is a
creature called the planarian flatworm. These little guys have many fascinating
properties. Among them, they are highly regenerative. If you cut them into pieces,
each piece will regrow exactly what’s missing and make a perfect little worm. But
they’re also smart. They can learn.

This is what we did. We used a laser to etch little bumps into one region of a Petri dish.
We would feed them in this one region. That’s called place conditioning. They would
basically learn that this is where they should eat. And then we cut off their heads
containing their centralized brain. The tails sit there doing nothing, no behavior, until
they grow back their brain. About  or  days later, they grow back their brain,


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behavior returns, and now you find out that they actually remember the original
information.

This was first discovered in the s by this guy named McConnell, but he did
everything by hand, and he got a lot of flack for it because nobody thought that you
could store information outside the brain. But we did it with this automated device
that I just showed you, and he was right. It does work.

What this tells you is that not only is there information stored outside the brain, but
that information can be imprinted onto the new brain as it develops. Behavioral
information is actually moving through tissue being imprinted onto a new structure as
it develops.

Here’s another example that I think is pretty cool.

Slide  of  · Watch at :

So this is a fly. This is not AI or Photoshop. The first time I saw this, I thought this was
a fake thing. What it’s doing on its wings is running a stripped down morphogenesis
program in two dimensions for ants. So it’s got these images of these other creatures
on its wings, and it uses them to scare off predators because nobody wants to deal with



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=517


the ants. But it’s remarkable, this degree of virtualization, you can run this simple
morphogenetic program on the wings, but then there’s a much more complex, one
three-dimensional program that is actually giving rise to the rest of the fly. And what
we’re starting to see here is really these software aspects to the material, where they
don’t just do the same thing every single time, but they have the ability to embody all
kinds of interesting patterns of form and behavior to the point where we can now see
very specific context-sensitive, flexible error minimization skills.

Slide  of  · Watch at :

For example, here’s a tadpole. This one has its eyes and its nostrils and so on. In order
to become a frog, this tadpole has to rearrange its face. The eyes have to move, the jaws,
everything has to move. It was thought that this was simply a hardwired process.
Somehow, all the organs were told which direction to go and how much, and then you
get from a normal tadpole to a normal frog. We tested this because it’s a strong claim
of mine that the intelligence of these kinds of processes cannot be guessed or assumed
from an armchair, that you have to do experiments. Sure enough, when we asked how
much plasticity this has, we created these so-called Picasso tadpoles. Everything is
scrambled. The eyes on top of the head, the mouth is off to the side. It’s like a Mr.


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Potato Head doll put together wrong; everything is in the wrong place. When you do
this, you find that they make perfectly normal frogs because everything will move
around in novel paths, sometimes moving too far and having to come back until you
get to a normal outcome.

This is very interesting. What the hardware gives you is not a rote set of movements. It
specifies an error minimization scheme relative to a set point. We’ll talk in a minute
about how that set point is encoded. What it’s giving you is a system that can start off
in different configurations, unexpected abnormal configurations, and still get the job
done and get to the right location in anatomical morphospace. This is one definition of
intelligence by William James. It’s the ability to reach the same goal by different means
in some arbitrary problem space. We now understand that the material these things
are made of is extremely flexible. It does all kinds of problem solving.

Slide  of  · Watch at :

As any problem-solving agent, however, it is also hackable, which has good news and
bad news. To show you one example from the plant world, this is an acorn. Acorns
very reliably make oak leaves. And so you might think that this is what the oak
genome does. It encodes this particular kind of shape.


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Except that along comes a bioengineer, a non-human bioengineer, this little wasp. And
what the parasite does is leave some prompts on this tissue that basically hack the
morphogenetic competencies of the cells and cause them to build something
completely different. So we would have no idea that these flat green things could build
a complex gall structure like this round, red, yellow, spiky thing, or this, because under
normal circumstances, they always build this leaf. So it’s clear that the material has all
kinds of capabilities that are very hard to guess in advance. You have to do a lot of
work. And we have a lot of ongoing projects in our lab to automate the process of
discovery. Presumably it took millions of years for the wasp to be able to do this. We
want to be able to do it quickly. And again, as I’m going to emphasize, not by
micromanaging the cells, not by genomic editing, not by telling individual cells what to
do, but by high-level prompts.


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It’s a two-way IQ test. In other words, the complexity of the thing you want the
material to build is dependent on our or the hacker’s level of sophistication.

So bacteria make these featureless blobs; fungus doesn’t do that much better;
nematodes are still simplistic, but mites are starting to get better. By the time you get to
insects, you get this beautiful structure that they can get the leaf to do.

So we have to learn ourselves. We have to improve our own capabilities before we can
get the material to do the cool things that we want it to do.


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The last thing I want to show you is a little bit of a problem solving, another example of
problem solving in a different space, this time not anatomical space, but a different
space that is actually very relevant for robotics. So here’s the experiment. We have
these flatworms. We put them in a solution of barium chloride. Barium is a
non-specific potassium channel blocker. It blocks all the potassium channels. Most of
the cells freak out, especially the cells in the head. Over the next  hours, their heads
literally explode. But if you leave them in the barium, refreshing the barium, what you
will find is that fairly quickly they will build a new head, and the new head is
completely barium adapted. The new head doesn’t care about barium at all. No
problem.

We thought that was remarkable, and so we did some transcriptomics, meaning asking
what genes do these barium adapted heads express that standard heads do not? What
happened transcriptionally in terms of gene expression? How did these heads become
barium adapted? We found a couple things. First of all, it really is only about a dozen
genes. Individual worms all find the same solution to this problem. They all find the
same gene expression.

Here’s the amazing thing. Imagine you’ve got this physiological stressor that you’ve
never seen before. Planaria are not typically exposed to barium in the wild, so there’s
no reason to think there’s any kind of evolved response to this. You’ve got this
incredible physiological stressor that’s totally novel. You have a library of ,
effectors, roughly. Those are the genes that you could turn on and off. Tens of


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thousands of potential actions that you could take, meaning steps that you could take
in transcriptional space. It’s a high-dimensional space. It’s a little bit akin to Hans
Moravik’s Moravik Bush, which is a robot with a very high number of effectors. He
was asking the question, how do you design a controller for something with a huge
number of effectors? We don’t really have efficient mechanisms, algorithms for that.
But this is what the system is doing. It’s faced with a novel problem in one space,
physiological space. It has actions that it could take in transcriptional space. In a very
rapid order, it identifies exactly the dozen or so effector firings that it has to do to solve
this problem. It’s a remarkable example. There are many others. We could do this for
hours. I could show you all kinds of wild examples. This material is really good at
improvising novel solutions to problems it hasn’t seen before.

Slide  of  · Watch at :

So what we want to do now is talk for a little bit about how this actually works. I’m
going to try to explain what’s going on under the hood to the extent that we know.
There are many open questions here.


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The first thing is that Life really self-assembles from something that people would call
just physics. Unfertilized oocyte, little bag of chemicals — people look at and say, that’s
not a cognitive system. That’s squarely within the province of biochemistry. That’s a
machine. It’s mechanical; it follows mechanical rules. Fine, but slowly but surely that
thing transforms itself into something like this or even something like this that’s going
to make claims about not being a machine and having true intelligence and all of that.

The one thing that we definitely learned from developmental biology is that there is no
magic lightning flash. There is no special time at which you click over from being a
mechanical system into having a mind. This is a slow and gradual scaling process.
This is not the end of the line, because there are other processes that can still happen
that are very interesting that I’ll mention briefly.

What’s actually happening here, and this is all described in this paper, is that by
interactions that we are now beginning to understand, this material is slowly but surely
enlarging its cognitive light cone. What I mean by cognitive light cone is the size in
both space and time of the largest goals it can pursue. Not the reach of its effectors and
sensors, but the size of the goals in some particular space, for example, in space-time,
of the goals that it can pursue. And we are now starting to understand how that
cognitive light cone is scaled up.


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Critical to understand here is that these cognitive light cones don’t just project into the
standard three-dimensional space of behavior. We as humans are completely obsessed
with D space. We are pretty good at noticing intelligent behavior of medium-sized
objects moving at medium speeds in three-dimensional space, and we call it behavior.
Then we look at other things such as software agents sitting inside a server. We look at
organoids, for example, neural organoids sitting in a Petri dish. It’s very common to
say those things are not embodied. They’re not embodied because you don’t see them
rolling around in three-dimensional space doing things the way that we do. But it’s
important to understand that this perception, action, prediction, memory, action loop
happens in all kinds of other spaces. Biology is great at deploying it in other spaces.
Living things navigate the high-dimensional space of gene expression; they navigate
spaces of physiological states and anatomical morphospace, which we’re going to talk
about the most. So we have to be very careful about embodiment. Just because it
doesn’t have legs or wheels, that does not mean it isn’t doing the critical thing for
intelligence, which is this perception-action loop with all that can be packed in
between. We are not good at recognizing or visualizing these things in other spaces.

This is the thing we are all made of.


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This is one cell. This one’s a free-living organism called Lacrymaria. There’s no brain,
there’s no nervous system. The whole thing is very competent in its local agendas that
it has around its own scale.


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And not only are the cells very competent, but the material inside the cells, the
chemical networks themselves are capable of several different kinds of learning. If you
test molecular network models, you will find out that, as a free gift from the
mathematics, you don’t need evolution for this, although evolution certainly optimizes
the heck out of it. But the material itself already is capable of habituation, sensitization,
and associative conditioning. Pavlovian learning. It can also count to small numbers.

You can see all that here, and we are trying to take advantage of this in the lab for
applications such as drug conditioning and things. Not only can these chemical
networks learn, but we found—our paper came out a week ago—we showed that the
process of learning, stimulating various components of this chemical network to cause
learning, actually increases causal emergence in the network. It becomes more than the
sum of its parts, the more that it’s trained. It’s a very, very interesting loop. The thing is
that this type of multi-scale scenario where the material has proto-cognitive properties,
the cells that comprise it also do, it goes all the way up.


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So, Descartes liked the pineal gland in the brain because he thought that, because
there’s only one of them, and he thought that suited the unified human experience.
Fine, but he didn’t have good microscopy available. If he did, he would have seen that
there isn’t one of anything. We are all collective intelligences in the sense that if you
look into the brain, you see all kinds of stuff. If you look into the pineal gland, this is
what it’s made of: tons of cells. Inside each one of those cells is all of this stuff, and you
can keep going. So all intelligence, I would argue, is collective intelligence. We are all
made of parts, and the goal of significant agents is to bend their components to their
will, to distort the option space for their parts such that the things they’re doing
actually feed into goals that occur in other spaces.

And so I think what’s happening in biology is that our bodies are in fact a multi-scale
competency architecture all the way from the molecular networks up, and every level
distorts that option space and produces various attractors and so on, such that the
parts do what they do, but as a result, they are actually implementing goals in other
spaces of which they are completely unaware. So I want to show you a couple of
biological examples of this.


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This axolotl, a little amphibian, is highly regenerative. If its leg is amputated at any
position, the cells very quickly realize they’ve deviated from the correct state in
anatomical space. They try to get back by regrowing the limb, and then they stop. The
most amazing aspect of regeneration is that it knows when to stop. When does it stop?
It stops when the correct limb has been completed. In other words, it’s an anatomical
homeostatic loop that traverses that morphospace, and it can tell when it’s within
acceptable error of the starting condition, and then it stops. But this is not about
repairing damage. The real story here is not that at all.


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The real story is about top-down control, because if you were to take a tail and graft it
to the side, to the flank of this animal, what you would find is that over some weeks’
time, the tail would actually turn into a limb. Not only does the tail remodel into a
limb, but these cells up here, which are tail tip cells sitting at the end of a tail, are
locally fine; there’s no damage up here, but they turn into fingers.

What’s happening here is that all the molecular biology that’s needed to re-specify
these cells into finger cells—so all the gene expression changes and the cell
movements—is being driven by a high-level goal-seeking process. The large-scale
homeostatic loop can tell that it’s been deviated from a scenario where what you have
on your flank are limbs, not tails. Those control signals propagate all the way down to
the cellular and molecular level to make this happen.

Now notice that this is a key property of cognitive systems. When you wake up in the
morning you have very abstract social goals, financial goals, whatever you have. Those
are very abstract things. But in order for you to get up and walk and execute on those
goals, those goals have to be transduced to make the calcium ions dance across your
membranes. The actual chemistry of the potassium channels has to be harnessed by
these higher-level loops in order for you to do goal-directed behavior.

And that is what the multi-scale architecture enables to happen: every level is able to
bend the option space of the level below, and thus it transduces increasingly abstract
goals. Individual cells have no idea what a finger is or how many fingers you’re


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supposed to have, but the collective absolutely does, and you can see that in these
examples.

So now, how does it work?
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To give you a very brief introduction, about  years ago, we made the first tools to
read and write the electrical states inside of tissue. Why? Because if we wanted to
understand goal-directed behavior and top-down causation, we took inspiration from
the brain, which is the one uncontroversial example where we know that happens. So
we know we have high-level goals, and we know we can work to solve problems.

The cognitive glue that allows this to happen in the brain, meaning why do we know
things that our neurons don’t know, why are we pursuing goals that our neurons don’t
have, is because there’s a set of policies and mechanisms that bind those competent
subunits to common purpose. Do they align them in various problem spaces? That
cognitive glue is electrophysiology. It’s the electrical signaling in the brain.

It turns out that the ability of electrical networks to do that was noticed by evolution a
really long time ago. It’s ancient, long before brains and nerves and muscle evolved.


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All cells, starting with bacterial biofilms, were using electrical networks to integrate
information. I will point out a couple of examples.

This is a time-lapse of an early frog embryo putting its face together. If we read the
bioelectrical signals using these voltage-sensitive fluorescent dyes, we see patterns
such as this that presage the future of what this thing is going to do. This is what it’s
building towards. All the gene expression and anatomical activity will arise toward
putting an eye here, putting the mouth here, putting the placodes out here. This is a
pattern memory that the cells will implement. And if we change this pattern, they
implement something else.

This is a multi-scale phenomenon. Each one of these circles is a separate embryo.
When we poke this guy in the middle here, all these others find out about it. Not only
is bioelectricity the cognitive glue within a single organism, it has a similar function
across organisms because groups can do things that individuals can’t do. For example,
resist teratogens. It’s a very dynamic computational network, working slower than the
brain. Same idea.

Having discovered these things, we developed methods to write information back into
the cells. No waves, no frequencies, no electrodes, magnets, nothing like that.


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We take all our tools from neuroscience because fundamentally neuroscience is not
about neurons at all. It’s about this electrical, this cognitive glue property. We use the
same tools and we hacked the same bioelectrical interface that the cells are using to
control each other.

We can inject into the early frog embryo RNA expressing specific potassium channels.
For example, they establish a voltage gradient. That voltage gradient is interpreted by
the surrounding cells as make an eye. We can make other organs too. Here it is. This
gut tissue here was told to make an eye. It did. That eye has the same lens, retina, optic
nerve, all the same stuff.

These patterns that exist in this, that are stably kept in this electrical medium, these
pattern memories, are used to guide the activity of the system at an organ level. We’re
not telling it how to make an eye. We have no idea how to make an eye. It’s a very
complex organ, but we don’t need to. The system knows how to propagate high-level
prompts down into the molecular pathways.

Not only will it make an eye from this very simple prompt, but we can take advantage
of all the other competencies of the tissue. If we only inject a few cells, the blue ones
are the ones we injected, they will automatically recruit a bunch of their neighbors. All
this other stuff out here wasn’t injected by us. These cells realize there’s not enough of
them to make an eye, so they recruit their neighbors to complete the task, much like
other collective intelligences do, such as ants and termites.


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This material has all sorts of competencies, and they’re all organized around being able
to minimize error towards specific goals, and taking goal-state information from
higher levels. That is the architecture that’s happening here, and that’s the problem
decomposition that the material natively does.

Slide  of  · Watch at :

I won’t take the time to talk about all the biomedical stuff, but whereas all of today’s
biomedicine focuses on these kinds of bottom-up interventions, we have a whole
panoply of top-down strategies that are allowing us to do some pretty wild things in
regenerative medicine, birth defects, cancer suppression, aging, and so on. Most of our
lab is focused on that stuff.

The development of AI-based tools that could enable us to literally communicate with
the various levels, not just the molecular level, which is what all drug discovery is
focused on, or genomic editing or those kinds of things, but to talk to these higher
levels so that we can have much more efficient communication and take advantage of
all the problem solving that they can already do.

My claim is that biology itself tames this complexity by a multi-scale architecture of
agential systems, systems with agendas, systems with learning capacity, with problem


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solving competencies. The price you pay for that is occasional defections. That’s cancer.
Another price we pay for that is hackability. There are all kinds of parasites and other
things that can hack it.

But the big win there is that no system has to micromanage all the way down. They are
all just hacking each other at very high levels with prompts, because the material
they’re talking to is itself a kind of cognitive agent. That’s what I think is happening in
biology.

Slide  of  · Watch at :

Now I want to say a couple things about why this actually works and where this all
came from. The thing that drives all this is commitment to an unreliable substrate.
Whereas in computing today we mostly have error correction algorithms and we have
abstraction layers and we have all these things to try to make the data stay still. In other
words, you have to be able to trust your material. If you’re working at one level, you
cannot be worried that the silicon is floating, the numbers are floating off because your
silicon is doing something weird. Biology is exactly the opposite because biology
operates with a very unreliable substrate.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=1850
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I’ll give you a simple example that started me on the road to thinking about all this,
which is that caterpillars, these soft-bodied kinds of creatures, have a very particular
brain for crawling around on leaves and eating them.

They turn into a butterfly. A completely different controller is needed to operate. This
lives in the three-dimensional world now and doesn’t care about leaves at all. It likes
nectar. The brain is quite different.

What happens during this metamorphosis process is that the brain is dissolved, most
of the cells are killed, most of the connections are broken, and then you build a new
brain. The remarkable thing about this is that memories that are formed in the
caterpillar—if you train the caterpillar, the butterfly still remembers the original
information. That’s wild enough that you can keep information while the substrate
itself is being torn to shreds.

The deeper issue here is that the actual memories of the caterpillar are of no use to the
butterfly. In other words, specific actions of the controller for a soft-bodied creature
that saw stimulus and needed to go eat the leaves do not work at all for the butterfly.
The butterfly doesn’t care about leaves. It doesn’t move the same way that the
caterpillar did. To survive, to persist as a memory across this refactoring, you need to
be remapped.

The fidelity of the information doesn’t help you here; the saliency of the information
does. In other words, you need to remap it onto a completely new architecture, new


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effectors, new sensors, a new kind of problem space, in fact, a higher dimensional
problem space.

All of this is described here. But that just started me thinking about the importance of
interpreting the information you have. The information, whatever molecular
information it gets from the caterpillar, cannot be used directly. It has to be interpreted.
While this is pretty drastic, we do a little bit of this, puberty and things like that, but it’s
not as drastic as this.

Slide  of  · Watch at :

All cognitive agents face the same paradox. At any given time step, you do not have
access to the past. What you have access to are the memory engrams that the past left
in your brain or body. You have the messages from past versions of you. Memories are
a kind of communication event on this model. You get these messages and now you
have to interpret them.

They are sparse because there’s an encoding event where you throw out a lot of the
extra regularities and squeeze it down into this very tiny n-gram, but then you’ve
thrown away all this information. You have to re-inflate it again. You have to interpret



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2025


it. We as cognitive agents are a continuously evolving, self-telling story that attempts to
make a coherent, adaptive model of itself and the outside world based on the
information that it received, not sticking to it mechanically, but telling the best story it
can, because this stuff is algorithmic, compressing rich past experiences into a thin
representation. That’s algorithmic and deductive, but this part is creative. You’ve lost
information. You can’t possibly know exactly what happened or how past you
interpreted these messages.

What that means, and this is true not only cognitively, it’s true anatomically: the reason
that all this plasticity works in the body is that the genetic information you get from
past lineages is just a prompt. It’s just a message that you can interpret in different
ways. And that’s the collective intelligence of the body. The goal is to interpret all that
information to do something coherent.

Slide  of  · Watch at :

And this gives rise to all kinds of amazing competencies. For example, this is a
cross-section through a kidney tubule of a newt. You’ll notice  to  cells normally
build this. You can make newts with much larger cells by giving them higher copy
numbers of their genome. So they’re called polyploid newts. And if you do that, the


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newt is still the same size. How is that possible? Well, you find out that fewer cells
make the same structure. And then if you go really crazy and you make very high level
polyploid newts, the cells get so gigantic that just one cell wraps around itself to give
you the exact same structure.

Now this is remarkable. This is for two reasons. First of all, this is a different molecular
mechanism. So this is straight up what people measure on IQ tests. You’re given a set
of objects and you’re asked to solve a problem. How do you use this to solve a
particular problem? So this system has a genome. That genome gives lots of
affordances. There are ways for cells to communicate. There are ways to bend
themselves. You have to use the right tools to solve a problem in novel circumstances.

So now think about what it’s like being a creature coming into this world. You can’t
rely on how many copies of your genetic material you’re going to have. Never mind the
uncertain environment. You can’t even trust your own parts. You don’t know what
your genetics are going to be. You don’t know how many cells you’re going to have or
how big your cells are going to be. You have to try to solve the problem in novel ways.
And this is why all this plasticity works. The reason those tadpoles work with eyes on
their tails is because they never knew that the eyes were going to be in the front in the
first place. They could never count on that. If they are, great, that’s a default outcome.
But no one can count on that because things will change. You will get mutated on the
lineage scale, the environment changes, your own parts change. It’s beginner’s mind.
You have to take what you have and somehow do something useful with it.

This is Bongard’s  paper on robots that didn’t know what their shape was, really
prescient in all of this.


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Biology is dealing with a very unreliable medium. You never know how many copies
of anything you have or whether your proteins are getting degraded. You can’t take it
literally, but you can develop good skills to interpret it in a useful fashion. That’s why
this kind of cognitive bottleneck, this autoencoder kind of thing, is exactly what
organisms do. They don’t make other organisms, they make eggs, and it’s up to the
cells to interpret the information that was in the egg.

If you look at how evolution works on agential materials, you find something really
interesting. You find that the competency, the problem-solving competency of the
material, makes it really hard to evaluate genomes, because genomes aren’t what come
up for selection. What comes up is the actual phenotype, the results. What evolution
ends up doing is spending much more of its time cranking improvements in the
interpretation machinery. That confabulatory ability to tell novel stories using
whatever information you’ve got with no allegiance to how it was interpreted in the
past or what was happening before is what evolution really cranks on. So you end up
with this positive feedback loop between this kind of creative interpretation and the
intelligence of the system in solving different kinds of problems.

All that plasticity makes life incredibly interoperable.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2262
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And that means that pretty soon we are going to be faced with not just this spectrum,
where we all came from a single cell, both evolutionarily and developmentally, but
there’s another spectrum, which is technological and biological change. This human
that features so prominently in stories of philosophy of mind and so on is a spectrum
that’s not easily dealt with by our ancient binary terminology. We are going to have all
kinds of interesting creatures, made of all sorts of different combinations of evolved
and engineered material. Now we have to ask the following question. If you’re dealing
with a being that is nowhere on the tree of life with you, meaning they did not come up
through the same evolutionary process, can we guess what their competencies are
going to be? What are their goals? What are their preferences? In standard biology
here, this morphospace of these planarian heads, there are specific attractors that we
can chase these tissues into. People will say, well, of course, evolution formed these,
right? That’s what evolution does. But when you’re dealing with agents that don’t have
that simple backstory, what actually happens? This is going to be the weirdest part of
the talk. Here’s where I’m going to speculate as to what I think is happening here.

Biologists like two things. They like stories about physics and they like stories about
genetics. In other words, they like explanations for a certain phenomenon which can
be cashed out in terms of the necessity of physics and the historical contingency of its
environment, and things that have happened in the environment.

But we already know that that’s not sufficient and that physics isn’t closed like that.
Just as a simple example, cicadas come out at  years and  years. If you’re a biologist,


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you want to understand why. It’s because they are trying to time it to periods that are
hard for predators to match. Thirteen and seventeen are good because they’re prime
numbers. If you keep trying to pursue the chain of explanation, the next question is,
okay, why don’t  and  have factors? Now you’ve left the physical world.

Slide  of  · Watch at :

Now you’re in the land of mathematics. There is nothing in physics that will answer
that question for you. There’s nothing in evolution that will answer that question for
you.

If you want to understand what cicadas are doing, you have to eventually cross over
and start looking at mathematical patterns and how ”why” questions are handled in
mathematics.

The reality is that genetics and environment are not the only place that complex
patterns come from.

I could have given many examples. This is just one of my favorites because I think it
looks cool and it’s kind of organic.

All these things look biological a little bit.


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This is called the Halley plot, and it is what happens when you map the behavior of
this complex number function. It’s very simple, this little tiny seed. Talk about small
n-grams that can be re-inflated into complex patterns.

Look at this.

The compression is insane.

If you plot this in a particular way, you get this amazing structure. The answer to why
the structure looks the way it looks has nothing to do with physics.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2535
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There’s nothing you can do in the physical world to change what it is. There’s no
history behind it. It is a fact of mathematics. Math is full of these things.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2557
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And then, this is a video I made by iterating this in various ways. There’s very rich
structure buried in the rules of mathematics, and biology exploits these things. These
are amazing free lunches that biology uses all the time. And I want to show you some
biological life forms that have this kind of character.

We can’t use selection history to explain it.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2565
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If I showed you this little creature, you might think it’s something we got off the
bottom of a pond somewhere, a primitive organism. If you were to sequence it, you
would find out that it’s % Homo sapiens. Adult human cells extracted from the
trachea of patients undergoing biopsies under a particular protocol that we developed
form this little self-motile creature. It looks and acts nothing like any stage of human
development. It has some amazing properties.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2597
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It has all kinds of behaviors. It has about , genes expressed differently than the
tissue did when it was in the patient. So about half the genome was completely
remodeled here. Remember, no changes to the genome, no synthetic biology circuits,
no scaffolds or weird drugs. All we did was liberate those cells from their environment
and let them reboot their multicellularity. This stuff out here is human neurons, and
what we did was make a big scratch through it. These anthrobots, which is what we
call these little creatures, they land in this superbot cluster, and they actually start
healing across the gap. Lift them up four days later, this is what you see. This is the
first thing we checked, so probably they do , other things, we don’t know. But they
have this amazing ability, and who would have thought that your tracheal cells that sit
there quietly dealing with mucus and air particles have the ability to form a little
creature that can assemble and do this kind of thing?

These are xenobots, so it’s a similar idea made with frog cells.

They have an amazing capacity. They have many, but this one thing I’ll show you is
called kinematic replication.

So if you give them a bunch of loose epithelial cells as a material, they will collect it
into piles.

The piles mature and become the next generation of xenobots. And then guess what
they do? They go on and they make the next generation and the next again.

We didn’t teach them to do this.


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The amazing thing with all of this is that this again goes back to the plasticity of the
material and this idea that the genome learned to do this over many generations. This
is the standard developmental sequence. Here are the tadpoles. But it also can do this.
This is an -day-old xenobot, and many other kinds of things like kinematic
replication. There’s never been selection to be a good xenobot or a good anthropot.
There’s never been any anthropots or xenobots. Where do their capacities come from?
You cannot tell a story of selection that matches it. If you say that these are emergent
from the things that the cells did do in the environment, what you’re basically giving
up is any degree of specificity between the final outcome and the history of selection
that they’ve had, which is basically what evolution was supposed to do. It was
supposed to explain the specificity and give you a causal story.

We know when we paid for the computation to do all of this, that was during the
evolution of the frog. When were all the computations done to get this going? There
was no history of this. Where did this come from? This is very interesting. The idea of
these kinds of things that have no obvious history of either learning or selection is, I
think, really demanding attention.


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There is a precedent for this. Biologists hate this idea of the physical world not being
closed and of needing to go outside a nice sparse ontology. But mathematicians are
fine with this. There are many Platonist mathematicians who believe that there are
patterns that they are discovering, not creating, and that the order, that the space
containing these patterns is a structured ordered space which they navigate through
their research. This is actually starting to crop up in machine learning as well, which
they call the ”Platonic space hypothesis.”



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2800


Slide  of  · Watch at :

People who like their space physicalist, sparse physicalist ontology basically lean on
emergence and the idea that there are just some facts that hold in the physical world.
You have a system with simple rules, it can do complex things. And that’s it. These
things are emergent. I don’t like that view because I think it’s mysterian. I think that it
relegates these things to surprise; emergence then is anything we find surprising. You
write them down in your big book of emergence and that’s the end of it.

I like the more positive view of the mathematicians where they’re not haphazard
things that just happen to hold in the physical world. There is an ordered, structured
space that we can rationally study. How do we study them? By producing pointers
into that space.

And so everything that we make, cells, embryos, biobots, AIs, hybrots, cyborgs, all of
them are pointers into that space. We can use them as exploration devices or interfaces
to try to understand the mapping between the thing that you built and the patterns
that are ingressing through this space. If I can’t prove it, it’s a metaphysical assumption
that the space is understandable. It’s not just a random grab bag of stuff.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=2837
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And so what I do think is important is that it actually is not just for the biologicals. It’s
not just the complex living things that get to have the benefit of these ingressions, these
free lunches from mathematics. It doesn’t take much at all. And if you’re interested,
this is one example. I chose sorting algorithms on purpose because they are so
minimal and so deterministic and so obvious, to maximize the shock value. Take a look
at this paper.

What we found is that even simple things such as bubble sort have unexpected side
quests, the things they’re doing that are literally not in the algorithm. They’re nowhere
in the algorithm. And so that means, for all the rest of us biologicals, there are things
we have to do. We are forced by the physics and by the genetics of our world to do
certain things and are limited in certain ways. But for the time that they are alive and
operational, before they get ground into dust by the physics of their world, there are
other things they do that are nowhere in the algorithm.

For this reason, I think the things they’re doing would be things behavioral scientists
would recognize immediately. If you didn’t tell them that this came from an algorithm,
they would immediately say, ”oh yes, this is something we see all the time among the
set of behaviors we’ve seen.” These are behavioral competencies that arise that cannot
be explained simply by looking at the algorithm. They’re not inconsistent with the
laws of physics any more than our cognition is, but they’re not prescribed by it.

I think it’s very important to understand that if even dumb bubble sort can be an
interface to interesting behavioral propensities from this latent space, then what do we


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say about the Internet of Things and language models and all this other complicated
stuff? I get really frustrated when people say, ”well, I write these language models.”

Slide  of  · Watch at :

It’s just linear algebra. There’s nothing in there. If nobody had noticed it doing these
things, what else do we not understand? I want to make a claim, which is that our
formal models do not circumscribe the cognitive aspects of the objects that they’re
supposed to understand.

For the exact same reason that the rules of biochemistry do not fully describe what our
minds are capable of, the algorithms and the stories of materials and everything else
that we try to use to understand simple machines, quote unquote, do not fully
circumscribe what they’re doing either. My point is that there are limitations, and these
are limitations of our formal models. They are not limitations of the actual thing. There
are massive surprises, certainly on the biological end, but it goes all the way down.

My point is not to say that living things are machines in the sense that we’re all on the
same spectrum, but not because you can use simple machine metaphors to understand
life. Precisely the opposite, because even quote unquote machines are doing things that
simple, mechanical formal models do not capture. The magic goes all the way down.


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We are soon going to be living in a very wild world full of all kinds of different
embodied minds, all kinds of combinations of software, synthetic materials, evolved
materials, and all of the ingressions from this latent space that they allow. We are very
poor at predicting what is going to come through, what the behaviors are going to be.
We need to get a lot better at this so that we could have an ethical synth biosis with all
these things and for different types of human flourishing that I think we’re all
interested in.


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The bottom line is this, that I think we need to do bio-inspired computing. We need to
focus on unreliable, agential materials, a flexible plastic cognitive light cone,
complexity that is dealt with by top-down control. This thing that Josh Bongard and I
are developing called polycomputing. Embodiments are much broader than we think
they are. As unpopular as this is, I think the physicalist assumptions hold us back.
They hold us back in biology, cognitive science, and computer science. I don’t think
emergence and complexity are sufficient for what we need to do. I don’t believe we
make intelligences either biological or technological. We make interfaces that are
exposing us to an interesting latent space that we need to understand. I think that’s our
research agenda. There’s a whole bunch of papers.

I’m happy to send these to anybody who’s interested.



https://www.youtube.com/watch?v=3IFL09i9LWQ&t=3157


Slide  of  · Watch at :

These are all the people that I need to thank: the postdocs and the students who did
some of the work that I showed you today, lots of amazing collaborators, our funders.
Disclosure: there are three companies that have spun out of our lab that fund some of
the work. These are the commercial entities.

The model systems do all the heavy lifting. I always thank them. I thank you for
listening.


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